Image Segmentation for Different Color Spaces using Dynamic Histogram based Rough-Fuzzy Clustering Algorithm
نویسنده
چکیده
This paper describes a comparative study of color image segmentation for various color spaces such as RGB, YUV, XYZ, Lab, HSV, YCC and CMYK using Dynamic Histogram based Rough Fuzzy C Means (DHRFCM). The proposed algorithm DHRFCM is based on modified Rough Fuzzy C Means (RFCM), which is further divided into three stages. In the pre-processing stage, convert RGB into required color space and then select the initial seed points by constructing histogram. In the next phase, use the rough sets to reduce the seed point selection and then apply Fuzzy C-Means algorithm to segment the given color image. The proposed algorithm DHRFCM produces an efficient segmentation for color images when compared with RFCM and also the unsupervised DHRFCM algorithm is compared with different clustering validity indices such as Davies-Bouldin (DB index), Rand index, silhouette index and Jaccard index and their computational time for various color spaces. Experimental results shows that the proposed method perform well and improve the segmentation results in the vague areas of the image. General Terms Image Processing, Color Image Segmentation, Validity indices
منابع مشابه
Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملFuzzy Clustering of Color Textures using Skew Divergence and Compact Histograms: Segmenting Thin Rock Sections
Digital image segmentation is the process of assigning distinct labels to different objects in a digital image, and clustering techniques can be used to achieve such segmentations. However, many traditional segmentation algorithm fail to segment objects that are characterized by textures whose patterns cannot be successfully described by simple statistics computed over a very restricted area. I...
متن کاملColor Image Segmentation: Advances & Prospects
Image segmentation is very essential and critical to image processing and pattern recognition This survey provides a summary of color image segmentation techniques available now Basically color segmentation ap proaches are based on monochrome segmentation approaches operating in di erent color spaces Therefore we rst discuss the major segmentation approaches for segmenting monochrome images his...
متن کاملA Rough-Fuzzy HSV Color Histogram for Image Segmentation
A color image segmentation technique which exploits a novel definition of rough fuzzy sets and the rough–fuzzy product operation is presented. The segmentation is performed by partitioning each block in multiple rough fuzzy sets that are used to build a lower and a upper histogram in the HSV color space. For each bin of the lower and upper histograms a measure, called τ index, is computed to fi...
متن کاملColor Image Segmentation Using Soft Rough Fuzzy-c-means Clustering and Smo Support Vector Machine
Color Image segmentation splits an image into modules, with high correlation among objects contained in the image. Many color image segmentation algorithms in the literature, segment an image on the basis of color, texture and as a combination of both color and texture. In this paper, a color image segmentation algorithm is proposed by extracting both texture and color features and applying the...
متن کامل